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Abstract

Airborne black carbon from urban traffic is a climate forcing agent and has been associated with 

health risks to near-road populations. In this paper, we describe a case study of black carbon 

concentration and compositional variability at and near a traffic-laden multi-lane highway in 

Cincinnati, Ohio, using an onsite aethalometer and filter-based NIOSH Method 5040 

measurements; the former measured 1-min average black carbon concentrations and the latter 

determined the levels of organic and elemental carbon (OC and EC) averaged over an 

approximately 2-h time interval. The results show significant wind and temperature effects on 

black carbon concentration and composition in a way more complex than predicted by Gaussian 

dispersion models.

Under oblique low winds, namely ux[= u × sin(g=q)]~ (0,−0.5 m s−1), which mostly occurred 

during morning hours, black carbon concentrations per unit traffic flow were highest and had large 

variation. The variability did not always follow Gaussian dispersion but was characteristic of a 

uniform distribution at a near-road distance. Under all other wind conditions, the near-road black 

carbon variation met Gaussian dispersion characteristics. Significant differences in roadside 

dispersion are observed between OC and EC fractions, between PM2.5 and PM10–2.5, and between 

the morning period and rest of the day. In a general case, the overall black carbon variability at the 

multi-lane highway can be stated as bimodal consisting of Gaussian dispersion and non-Gaussian 

uniform distribution. Transition between the two types depends on wind velocity and wind angle 

to the traffic flow. In the order of decreasing importance, the microclimatic controlling factors 

over the black carbon variability are: 1) wind velocity and the angle with traffic; 2) diurnal 
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temperature variations due to thermal buoyancy; and 3) downwind Gaussian dispersion. 

Combinations of these factors may have created various traffic–microclimate interactions that 

have significant impact on near-road black carbon transport.
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1. Introduction

Carbonaceous particulate matter from on-road motor vehicle emissions contains organic 

carbon (OC) in particulate and semivolatile forms and the refractory carbon, variously 

referred to as ‘black,’ ‘elemental’, or ‘graphitic carbon’. The term ‘black carbon’ is 

generally defined as the soot component responsible for absorption of visible light (Yasa et 

al., 1979; Rosen et al., 1980), while elemental carbon (EC) refers to the refractory 

component determined by various OC–EC analysis methods. Soot is known to contain 

microcrystalline (i.e., graphitic) regions (e.g., Rosen and Novakov, 1977), hence the term 

‘graphitic carbon.’ In this paper, ‘black carbon’ is used as general term for both light-

absorbing carbon measured by an aethalometer and EC measured by NIOSH 5040 (Birch 

and Cary, 1996), with the latter being a principal subset of black carbon.

Airborne OC components from motor vehicle exhaust adsorb onto EC and other inorganic 

nuclei. In the process, black carbon size grows rapidly, by almost 10 times, approaching a 

micrometer (μm)-size range (Adler et al., 2010; Xiong and Friedlander, 2001). The resultant 

amorphous aggregates, like other fine to ultrafine particulate matter, have less airborne 

mobility than gaseous pollutants. Not coincidently, black carbon aerosols are found to have 

limited aerial extent in atmospheric distribution, relatively short atmospheric residence times 

of a few days to weeks, and occurrences of regional emission hotspots (e.g., Highwood and 

Kinnersley, 2006; Bergstrom et al., 2002; He and Dhaniyala, 2012; Liousse et al., 1996; 

Parungo et al., 1994).

In an urban area, transportation routes (i.e., highways, arteries and connectors) distribute and 

connect its population and activities. The network creates numerous configurations in 

traffic-wind orientations producing a diverse range of microclimate conditions. Black carbon 

transport in this near-surface boundary layer can be complex. Kumar et al. (2011) reviewed 

ultrafine aerosol transport in urban areas and outlined five urban scales of wind variability, 

among which aerosol transport mechanisms differ. The smallest scales in vehicle wake, 

highway orientation, and street canyons, can host intense and complex aerodynamic 

interactions affecting pollutant transport. For these reasons, observed departure from the 

classic Gaussian dispersion process is widely reported (Zhu et al., 2002; Finn et al., 2010; 

Rao et al., 2002; Levitin et al., 2005; Mishra and Padmanabhamutry, 2003; Oettl et al., 

2001).

Microclimatic factors controlling near-road pollutant transport have been known for many 

years in road emission modeling and impact assessment (e.g., Turner, 1970; Eskridge and 

Rao, 1983; Venkatram, 1992, 1996; Venkatram et al., 2004, 2007; Wang et al., 2006; 

Liang et al. Page 2

Atmos Environ (1994). Author manuscript; available in PMC 2015 November 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Chock, 1977; Huber et al., 1991; Davidson et al., 1995; Cochran and Derickson, 2011). The 

effects are important to near-road air quality monitoring planning (Baldauf et al., 2009) and 

in air pollution mitigation such as the use of tree and vegetation barriers along roadways 

(e.g., Baldauf et al., 2008). Despite numerous investigations since Turner (1970) and Calder 

(1973), however, the near-road transport analysis of pollutants in urban settings remains a 

challenge. This challenge will not lessen because of occurring climate change in wind field 

as well as evolving urban landscape and transportation infrastructures.

As a part of the characterization and adaptation effort, we describe here a case study on the 

black carbon concentrations and their variability at and near a traffic-laden multi-lane 

highway in Cincinnati, Ohio. Discussion is centered on pollutant transport under low wind 

meteorological conditions. In a separate paper, we will utilize the measurements and 

analysis results to quantitatively evaluate Gaussian transport models in order to improve the 

model performance at low wind conditions. Together, these studies converge to show the 

importance of vertical dispersion at the road (σo) on the pollutant's spatiotemporal variation 

in a near-road environment.

2. Materials and methods

The inter-state 75 (I-75) highway segment evaluated in this study measures 794-m long 

between two highway overpasses. This slightly curved road consists of five traffic lanes in 

each direction separated by a median; the outermost two lanes are separated from the main 

interstate and used for by-pass traffic. On the eastern side, a highway embankment of ~0.8 m 

height slopes down at a ~1:10 grade to a flat concrete-paved empty open space, where five 

sampling stations (M1–M5) were aligned perpendicular to the traffic flow (Fig. 1). On the 

western side of the highway is a gently sloped residential area, at an average grade of 1:127 

to the highway, of low-rise houses.

2.1. Traffic and wind measurements

Table 1 lists the traffic flow and meteorological conditions for each sampling period during 

the 9-day field study. A high definition camcorder fixed at the shoulder of the highway 

continuously captured on-road traffic activities. Traffic flow volume, fleet composition, and 

speed were later retrieved by extracting vehicular trajectory using a video-capture data 

collector method of Wei et al. (2005). Meteorology conditions were measured by a sonic 

anemometer weather station (Vantage Pro2™, Davis Instruments) at x = 30 m. The sensor of 

the weather station was fixed at same height as that of the sampler inlets. The date and time 

stamp was synchronized among the instruments, allowing temporal correlation of the traffic, 

weather, and black carbon measurements.

The total traffic flow on the highway was 2651 to 15,320 veh h−1 with an average of 9245 ± 

1722 veh h−1. Traffic speed varied slightly, averaging from 72.2 ± 22.3 to 99.6 ± 13.9 km 

h−1 (44.9 ± 13.9–61.9 ± 8.6 mph). Daily bi-modal traffic variation persisted for gasoline 

passenger vehicles (PC), with peaks during morning and afternoon rush hours, while the 

traffic of diesel trucks and buses (TK) peaked in the mid-day at ~600–2100 veh h−1. On 

weekends, the morning peak hour for passenger cars occurred after 11 am and the truck 

volumes remained low throughout the day. In the monitoring period, the by-pass lanes 
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(outermost 2 lanes) carried less traffic per lane, for example, by 2.5 and 4.5 times. 

Nevertheless, the by-pass lanes are combined with the main highway lanes into a single 

linear source. Station M1 (x = 0) is taken as the boundary of air pollutant dispersion toward 

roadside (Fig. 1).

Strong diurnal variations in air temperature (T), air density (ρ), wind velocity (u) and wind 

direction (θ) are characteristic of the measurement period (Fig. 2). The daily average of calm 

wind frequency was 11.73–53.09% between 6:30 am–8:00 pm. The highest was 78% during 

the 120-min 7M sampling period (Table 1). Daily average wind velocity was 0.24 ± 0.34–

0.82 ± 0.81 m s−1, before a 2.79 mm/24-h rainfall event (National Weather Services, Luken 

Airport) in the evening of October 13. Ambient wind velocity afterward increased to a 

maximum 6.7 m s−1, with daily averages from 1.0 ± 0.8 to 2.79 ± 1.18 m s−1, accompanied 

by reduced diurnal T and ρ variations. On other days of weak winds, a 1-min average wind 

direction changed frequently between downwind θ and upwind −θ (Fig. 2). Downwind 

refers to the wind of vector from the road to the sampling stations, and upwind is the 

opposite (station to road) direction. Overall, for the monitoring period, Pasquill stability 

class A–B (Pasquill, 1961) is assigned based on the cloudiness index and wind conditions.

For θ designation in Fig. 1, a statistical analysis shows the influence of multi-lane traffic on 

the near-road wind field (Fig. 3). Average u increased from 0.81–1.03 m s−1 to 1.66–1.96 m 

s−1, when the upwinds along the uplane traffic, namely, the traffic in lanes adjacent to the 

sampling stations became sub-parallel at a small angle <60° , its variance also increased 

(Fig. 3a). In contrast, upwinds against the traffic had the smallest average speed 0.81–0.97 m 

s−1. Similar wind variation in relation to traffic flow was reported by Chock (1980) and by 

Eskridge and Rao (1983). To describe the traffic wake effect, θ′ = θ for upwind and θ′ = 180 

− |.θ|. for downwind are adopted all relative to the monitoring stations in reference to the 

uplane traffic. This convention specifies θ′ < 90 for along-traffic wind and θ′ > 90 for 

against-traffic wind in the bi-directional highway (Fig. 1).

2.2. OC–EC and black carbon quantification

2.2.1. Laboratory OC and EC analysis—Particulate samples of <2.5 mm (PM2.5) and 

2.5–10 μm (PM10–2.5) size fractions were collected onto pre-baked quartz-fiber filters by 

five high-volume air samplers (Model TE-6070V, Tisch Environmental Inc.). The samplers 

were set up at the sampling stations M1-M5, one sampler at each location. The inlets of the 

samplers were at approximately 1.7 m above the ground. Prior to and after the field study, 

the five samplers were checked for leakage on-site using a pre-calibrated, variable resistance 

calibration kit supplied by the manufacturer.

Collected air filters were analyzed for OC and EC by NIOSH Method 5040, which is based 

on a thermal–optical analysis technique (Birch and Cary, 1996). Quartz-fiber filters were 

used for sample collection because of the high temperatures (≥850 °C) employed during the 

analysis. The thermal–optical analyzer (Sunset Laboratory, Inc., Oregon) was equipped with 

a pulsed diode laser and photodetector for continuous monitoring of filter transmittance (and 

reflectance). Based on the filter transmittance (reflectance), a correction for the ‘char’ 

formed during analysis of some materials (through carbonization) was made to reduce bias 

in the OC and EC results.
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The total OC and EC on the filter were calculated by correction to the sample punch areas 

representative of a fraction of the deposit area. The OC results were also corrected to the 

field and laboratory OC blanks (correction for adsorbed vaporous OC). At the roadside 

location, M1 (x = 0), OC concentration ranges in PM2.5 are 2.55–9.39, 3.04–5.19, and 2.76–

6.66 μg m−3 in the morning, noon and afternoon periods, respectively. Corresponding EC 

concentration ranges are 1.57–4.46, 1.59–2.51, and 1.56–2.56 μg m−3. The PM10–2.5 fraction 

contains less OC and EC than PM2.5 by factors, respectively, ranging from 2.34 to 7.50 and 

4.53 to 16.35. Detailed OC and EC results for all samples are provided in the Supplemental 

materials.

2.2.2. Black carbon aethalometer measurements—A MicroAeth aethalometer 

(MicroAeth™ model AE51, McGee Scientific) was used at the road curbside M1 (z 1.7 m) 

to measure black carbon using the 880-nm optical absorption. Measuring principles of 

aethalometer and instrument calibration for BC measurements are given in Hansen et al. 

(1984). The time interval of the aethalometer measurements was one minute. During each 

sampling period of approximately 2 h, the aethalometer measurements were conducted in a 

staggered sequence among the four sampling stations M1–M4. Each measurement at a 

station lasted ~8 min. At least 5 stable 1-min average black carbon measurements were 

obtained after stabilization before relocation to the nearby station. Before field sampling, the 

aethalometer was calibrated, by the manufacturer, for air flow rate using an external 

standard air flow calibrator and for the performance of black carbon measurement following 

the principles described in Hansen et al. (1984).

The relationship between non-selective black carbon measurements, labeled as CBC, and the 

total EC concentrations (CEC,t) of PM2.5 and PM10–2.5 samples was examined (Fig. 4). The 

overall linear correlation between CBC and CEC,t (Fig. 4) yields CEC,t = (0.908 ± 0.054) CBC 

(R2 = 0.527, p < 0.0001).

3. Results

3.1. Diurnal BC variability and wind dependence

A consistent correlation between  and u or its standard deviation was observed; the 

traffic-normalized concentration is given by , where Tr is the traffic volume 

per unit time. In Fig. 3b, arithmetic averages of all  measurements range from 0.009 to 

0.0255 μg (min)1 (m3 veh)−1. However, for most wind angles, the  averages fall into a 

range of 0.009–0.018 μg (min)1 (m3 veh)−1. At small θ′, significantly higher  was 

observed. The largest average was 0.0255, 0.0225, and 0.0248 μg (min)1 (m3 veh)−1 for the 

upwind θ′ = 40°, 62.5°, and downwind θ′ = 27.5°, respectively. For the winds opposing the 

traffic, average wind velocities were the lowest and their relative variance was the largest 

(Fig. 3a).

This  correlation is further corroborated in daily diurnal variations of 

meteorological parameters and black carbon levels at the M1 location (Fig. 5). High 

levels in the early morning periods of still winds were followed by a rapid concentration 
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decrease in the day-time period. The day-time period was characteristic of increasing u and 

wind energy in the form of 10-min σux. In the evening,  levels either recovered, 

approaching to the high levels in the morning, or remained low if wind turbulence persisted 

due to regional influences (Fig. 5).

3.2. Sources of OC and EC variability

3.2.1. The effect of wind velocity and angle—The 1-min average  variations with 

wind are further examined using traffic-normalized OC and EC concentrations in the PM2.5 

and PM10-2.5 fractions. The highest COC and CEC in PM2.5 are 9.4 ± 0.9 μg m−3 and 4.5 ± 

0.5 μg m−3, respectively. The OC and EC concentrations are at similarly high levels, 9.1 ± 

1.0 μg m−3 and 3.7 ± 1.8 μg m−3, for the 7M period of the highest calm wind frequency 

(~78%). In PM10–2.5, the largest COC and CEC were observed in the same time periods, but 

at consistently lower levels than in PM2.5.

The wind dependence for traffic-normalized  and  is shown in Fig. 6. The highest 

 and  are, respectively, 0.145 and 0.039 μg (min)1 (m3 veh)−1 in PM2.5, and 0.024 

and 0.006 μg (min)1 (m3 veh)−1 in PM10–2.5. These high C* levels occurred in a narrow 

range of the oblique low upwinds opposing the uplane traffic, or ux~(0, −0.50 m s−1) mostly 

in the morning hours. Under all other wind conditions,  and  are confined to a broad 

range insensitive to wind velocity (Fig. 6). Average  and  in PM2.5 are 0.031 and 

0.014 μg (min)1 (m3 veh)−1, respectively, or smaller by 4.6 and 2.8 times than the maximum 

under the oblique low upwind conditions. In PM10–2.5, the difference is 3.4 and 4.2 times 

(Table 2).

3.2.2. The temperature effect—The temperature effects defined by C* ~T−1/3 (Eq. (A.

11)) are distinct between the two groups identified based on the wind effects. Under oblique 

low upwind conditions, the largest C* concentrations and variability are found in a narrow 

temperature window (Fig. 7). Under other wind conditions, the black carbon variability 

conforms to C* ~T−1/3. These data also showed the characteristics of Gaussian dispersion to 

be discussed next. The correlation cannot be defined for EC in PM2.5 for this study. At 

location M1, a linear regression of the C* ~T−1/3 relationship yields a slope of −0.420, 

−0.148, and −0.203 μg (min)1 (m3 veh)−1 C−1/3 for OC in PM2.5, OC in PM10–2.5, and EC in 

PM10–2.5, respectively. The larger slope for OC in PM2.5 indicates more significant 

temperature effects on the volatile OC fraction of the finer particulate fraction.

3.3. Roadside EC and OC variability

The two types of  and  variability can also be identified in near-road dispersion 

along the M1 to M5 190-m transect. First, for those displaying the C*~T−1/3 relationship at 

M1, the roadside  and  variations predominantly satisfy the Gaussian dispersion 

(Figs. 8 and 9a). This roadside concentration variability shows a maximum change of 0.018 

μg (min)1 (m3 veh)−1 for OC and 0.009 μg (min)1 (m3 veh)−1 for EC in PM2.5 (Table 2). The 

level of variability is only slightly smaller than that due to the temperature effects, but is 
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significantly smaller, by 3.13–7.13 times, than variability caused by the oblique and low 

upwind conditions (Table 2).

3.3.1. Gaussian transport process—Dispersion-induced roadside OC and EC variation 

is a function of road emission rate Q (=Tref) corrected for u, the vertical dispersion error 

function pz(z,x/u) and its downwind equivalent py(y,x/u) (Weil et al., 1997):

(1)

Deriving from Eq. (1), the Pasquill–Gifford–Turner (PGT) and the surface-layer similarity 

theory (SST) analytical formulations (Luhar and Patil, 1989; Venkatram, 1992, 1996) are 

used to examine the observed roadside black carbon variability. Both have similar

Gaussian forms, but differ in σz and σy definition. Their traffic normalized concentration C* 

= C/Tr and the concentration ratios are

(2)

(3)

(4)

(5)

The four error function terms ζ(y,x), , ξ(y,x),  for near-road at x(0, 190 

m) in the 794-m long highway segment. Dimensionless parameter  for |L| >20 m 

where  is a dispersion factor depending on u, u* and σo (Appendix Eqs. A.4 to A.6). Fig. 8 

shows the least square non-linear regression results using Eq. (5) for EC in 14N and for OC 

in 7A. The  and  variability during downwind conditions conforms to the SST 

formulation. The Gaussian-type variability is also apparent for upwind conditions of high 

velocities, or |ux| > 0.8 m s−1 (Fig. 9a).

In both wind conditions, the concentration change in roadside Gaussian dispersion is distinct 

between EC and volatile OC, and between black carbon in PM2.5 and PM10–2.5. It can be 

derived from Eq. (3) that at M1 (x = 0), the ratio  is only a function of ef and σo. 

Not coincidently, the measured concentration ratios in the morning low winds falls into a 

range of 2.1–4.1 (2.9 ± 0.7, m̄ ± σ, N = 8) in PM2.5, and 3.9–15.5 (6.8 ± 3.7,m̄ ± σ; N = 8) in 
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PM10 – 2.5. For winds ux > 0.8 m s−1, the ratios are approximately 50% smaller at 1.4 ± 0.2 

(N = 5) and 3.5 ± 0.7 (N = 5). This difference implies a suppression of compositional and 

size-dependent variability under higher wind velocity.

The initial difference in  at x = 0 was further amplified in roadside dispersion. For 

those showing Gaussian dispersion profiles in Figs. 8 and 9a, the  ratio increased 

with distance x. This change is measured by R%, the percentage difference of the OC/EC 

ratio at a distance compared to the ratio at x = 0:

(6)

The dispersion-induced change in black carbon composition at roadside is shown in Fig. 

10a. Gaussian dispersion at the roadside apparently led to OC enrichment relative to EC 

over a short distance. This is well expressed by the nature of the logistic function in Eq. (6). 

Magnitude of the compositional change directly depends on relative dispersivity between 

OC and EC or . Hence it is a function of the microclimatic parameters u*, u, and 

vertical dispersion at the road σo (Appendix Eq. (A.6)).

3.3.2. Non-Gaussian roadside transport—Non-Gaussian variations are found in black 

carbon concentration and composition under the oblique low upwind conditions, or ux~(0, 

−0.50 m s−1), which occurred mostly during the morning hours. OC and EC concentrations 

and compositions have several distinct properties: high C* levels and large variance within a 

narrow range of wind conditions (Fig. 6); the absence of C*~1/T1/3 correlation in contrast to 

those characteristics of the Gaussian dispersion (Fig. 7); and a small increase of OC/EC 

ratios or R% along the near-road 190-m transect (Fig. 10b). At roadside, the geometric mean 

of  ranges from 1.04 to 1.15 (Fig. 9b) inferring a uniform distribution Pu(θ).

Non-Gaussian upwind transport of pollutants has been reported in several studies including 

GM experiments (Chock, 1977, 1978), the Prairie Grass experiments (van Ulden, 1978), and 

in the original analysis of Turner (1970) and reanalysis of Calder (1973). In the GM 

experiment, higher pollutant concentrations during upwind conditions were associated with 

high frequency eddies which occurred when the ambient wind opposed the uplane traffic 

(Chock, 1980). Such meandering-induced upwind dispersion was also reported by Thoma et 

al. (2008) in roadside measurements and by Davidson et al. (1995) in experimental 

simulations.

In diagnosis, the meandering differs from atmospheric disturbance in a distinct 

relationship;  is the standard deviation of vertical wind directions (Hanna, 1983). Fig. 11 

shows the relationship in which the standard deviation of overall wind σθ is used. All noon–

afternoon samples conform to a region defined by two σθ~1/u data regression lines. The 

morning samples, 14M and 15M, of high winds also fall into the overall trends. In contrast, 

all the other morning hours define a large σθ range below the atmospheric turbulence trend 
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lines. The small scales of turbulence energy (σθ) and low upwind (u < 0.5 m s−1) condition 

favored a meandering condition, under which the exceptionally high black carbon 

concentrations occurred in the non-Gaussian dispersion (See Figs. 7 and 9b).

4. Discussions: microclimate factors and assessment implications

4.1. Wind factors in near-road transport

Two major types of black carbon variability in relation to the wind conditions were observed 

in the I-75 highway experiments:

■ High and variable near-road black carbon concentrations under oblique low upwinds 

opposing the traffic, or ux~(0, −0.50 m s−1). Their variability, greatest during morning 

hours, is inconsistent with the C* ∝ 1/T1/3 relationship at-road, but is characteristic of 

the roadside non-Gaussian dispersion.

■ Gaussian-type black carbon variations under all other wind conditions. The near-road 

concentration variability conforms to Gaussian dispersion in the SST formulation. The 

dispersion-induced concentration difference along the 190-m M1–M5 transect is the 

smallest compared to the at-road changes caused by oblique low winds and 

temperatures.

Venkatram et al. (2004) proposed dual mechanisms applicable to a highway environment. 

The hybrid overall formulation is used in the regulatory AERMOD model (Cimorelli et al., 

2004). Modified from Venkatram et al. (2004), overall black carbon concentrations at the 

I-75 site is written as the sum of a Gaussian dispersion component and a uniform 

distribution Pu(θ):

(7)

where fθ is a binary proportionality factor marking a transition between the two controlling 

processes.

In the I-75 study, a rapid transition from Gaussian to non-Gaussian uniform distribution was 

observed at a small angle  and under low winds. Fig. 12 shows the transition in a 

correlation between black carbon concentrations in PM2.5 and the overall wind standard 

deviation  representing the wind turbulent energy. Venkatram et al. (2007) used the 

vertical wind component σw and stipulated an inverse relationship C* ~ 1/σw that governs 

the near-road pollutant transport. In Fig. 12, the overall  and  variation envelops can 

be described mathematically using the relationship . The representation is 

unsatisfactory, however, under both high and low wind conditions.

A rapid transition at , or ux ~ (−0.42, 0.36 m s−1) in Fig. 12 is noteworthy. 

Above the threshold, measured  and  fall into a narrow range and conform to near-

road Gaussian dispersion (See Figs. 8 and 9a). On the other hand, the weaker wind energy 
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for  corresponds with the elevated  and large  variations under 

the oblique low upwind conditions (Fig. 12). A uniform distribution is inferred (Fig. 9b).

The precise mechanism for this rapid transition is not immediately clear. In one possibility, 

the oblique low winds in a small  against the traffic can yield shear tensor τo and friction 

velocity , and consequently a large uplift of air mass in σo at the road 

(Appendix Eqs. A.4 to A.6). This uplift forced the emissions into a meandering state, 

moving toward the roadside during the morning hours. Similarly, Oettl et al. (2001) found in 

highway experiments that the largest model error of Gaussian formulations occurred in 

small θ (<25°) at opposing low wind (u~1.5 m s−1). This condition was also reported in the 

earlier studies (e.g., Chock, 1980; Rao et al., 2002; Levitin et al., 2005). In corroborating 

these accounts, we suggest that the transition between two processes occurs at a small θ′, but 

not under θ′ ~ 0 or parallel winds that Luhar and Patil (1989) assumed for u × sin(θ)→0 in 

the PGT dispersion models.

The preceding discussions indicate the importance of σo in the at-road process that affected 

near-road black carbon transport. This can be seen from the fact that both PGT and SST 

Gaussian models (Eqs. (2)–(5)) have similar Gaussian forms, but differ in that the wind and 

microclimatic factors on σo are considered. In the PGT model, σo is fixed for a given 

stability class. In the SST formulation, σo is a function of dispersion factor φ′, and hence the 

microclimate variables in u, u*, and L (Appendix Eqs. A.4 to A.6).

Urban-scale and regional factors affect local microclimate conditions and thus the black 

carbon transport and variability. Monitoring and characterizing the near-road wind field 

including the vertical wind velocities and turbulent kinetics (Baldauf et al., 2009), is critical 

to quantifying σo at the road and to assess the likelihood of meandering occurrence (Anfossi 

et al., 2007; Timm et al., 2009). The results, as demonstrated here, are essential to assess the 

black carbon mobility, source strength, and spatiotemporal distribution relative to roadside 

receptors.

5. Conclusions

The field study and qualitative analysis at a multi-lane highway segment in Cincinnati, Ohio, 

point to the important roles of local wind field and microclimate conditions in the near-road 

black carbon transport, concentration and composition. The slightly curved highway is 

composed of five lanes in each direction, carrying a traffic flow of weekly and daily 

variations in passenger cars, heavy diesel trucks and buses that varies by day of the week 

and hour of the day. Black carbon air filter samples were collected at approximately 2-h 

averages at five near-ground stations in a 190-m transect perpendicular to the roadway. The 

1-min average black carbon concentrations were also measured at the roadside.

Microclimate factors, particularly wind velocity and angle, significantly affected the black 

carbon concentration and composition in the near-road environment. Major conclusions of 

the case study are:
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■ Microclimate factors (T, u, ρ) and traffic flows all show strong diurnal variations. 

These diurnal variations are correlated with the 1-min average black carbon 

concentration CBC at roadside station M1. Measured black carbon concentration in the 

190-m roadside transect ranged widely from 4.04 to 52.0 μg m−3. The highest COC and 

CEC in ~2-hr sampling period are 9.4 ± 0.9 μg m−3 and 4.5 ± 0.5 μg m−3 in PM2.5, 

respectively (See Supplemental materials).

■ At roadside station M1, black carbon concentration normalized to traffic flow 

C*=(C/Tr) varied significantly under oblique low upwind conditions, or ux[= u × 

sin(θ)]~(0, −0.4 m s−1), mostly during the morning hours Fig. 6). Under these 

conditions, the highest  and  are, respectively, 0.145 and 0.039 μg (min)1 (m3 

veh)−1 in PM2.5, and 0.024 and 0.006 μg (min)1 (m3 veh)−1 in PM10–2.5. The roadside 

OC and EC variability is consistent with a uniform distribution Pu(θ) for which the 

likely transport mechanism of meandering is inferred.

■ Under all other wind conditions, air temperature is the second largest controlling 

factor of black carbon variability. There exists a strong C*~1/T1/3 relationship at station 

M1, particularly for OC and finer PM2.5 fractions. The temperature-dependent 

variability is slightly larger than those caused by roadside Gaussian dispersion within 

the 190-m transect. It is significantly smaller, however, than those caused by the oblique 

low winds.

■ Under all other wind conditions, Gaussian dispersion attenuates black carbon 

concentration and increases ratios in the observed roadside transport. The 

average  and  change in the 190 m transect is respectively 0.015 and 0.010 μg 

(min)1 (m3 veh) −1 in PM2.5. The variation is over 5 times smaller in PM10–2.5. The 

magnitude of the concentration change is the smallest compared to wind and 

temperature factors at the road. The variability can be adequately described using the 

SST dispersion formulation with σo ≠ 0 at the highway.

These results all demonstrate the importance of initial vertical dispersion σo at the road 

caused by plume rise in response to the wind–traffic interactions. For overall black carbon 

variations, we suggest the adaptation of Venkatram et al. (2007) in that a binary 

proportionate factor fθ is used to describe the rapid transition between Gaussian dispersion 

and non-Gaussian transport. The fθ definition depends on the wind–traffic interactions and 

microclimate factors in urban-scale and regional environments, for which further 

investigations are warranted.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A

A). For a line source at a single-lane highway, black carbon C* at x is (Luhar and Patil, 

1989):

(A.1)

In the PGT formulation, σy, σz are defined by parameters a, b, c, p, and q for under stability 

class A–B for which the black carbon  and concentration ratio  are:

(A.2)

(A.3)

Adapting from the SST formulation of Venkatram (1996, 1992), we can write σz for stability 

class A–B assuming σo ≠ 0:

(A.4)

(A.5)

(A.6)

Substituting Eqs. A.4 and A.5 into A.1, the SST Gaussian formulation for black carbon 

concentration and concentration ratios can be written as:
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(A.7)

(A.8)

B). For multi lanes of “air puff” each as an independent source, C* at x is an integration over 

the highway (x, x + W) (Venkatram et al., 2007),

(A.9)

C). For well-mixed air parcel at a multi-lane highway, σo in Eqs. A.7 and A.8 is given using 

the geometric similarity:

(A.10)

uw~1/T3 for thermal plume rise in convective boundary layer (Weil, 1985). Then Eq. A.10 

yields σo ∝ WT1/3. Substituting the relationship into Eq. A.7 and further assuming the error 

function terms ~1 for near-road stations, we have:

(A.11)

Nomenclature

a, b, c, p, q Pasquill's stability parameters

C concentration (M l−3) with subscript referring to EC, OC, or BC

Co concentration (M l−3) at M1 at the highway curbside taken as the road source 

concentration

C* concentration (EC, OC, or BC) normalized to traffic flow in Mt (l3Veh)−1

ef effective emission factor, dimensionless

g gravitational acceleration constant

ho source height = in l
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H air emission height at tail pipe in l

Hp plume rise height at road in l

L Monin–Obhukov length in l

p a half length of the road segment taken as a line source in l

Pz, Py a half length of the road segment taken as a line source in l

Qo surface heat flux in J/t A−1

R% the percentage difference of the OC/EC ratio at a distance compared to the 

ratio at x = 0

T ambient air temperature in T

Tr traffic volume per unit time in Veh t−1

u wind velocity in l t−1

ux wind velocity in downwind direction in l t−1

u* surface friction velocity related to vertical temperature gradient and air 

density in l t−1

W Highway width in l

α constant depending on W, z, ho and φ for given air parcel

θ angle between road and wind direction in Fig. 1

θ’ a conversion of θ to describe the traffic wake effect ρ air density in M l−3

σx, σy, σz dispersion parameters in x, y, z directions in l

σo vertical dispersion parameter at x = 0 in l

σW vertical velocity variance in l t−1

overall wind velocity variance in l t−1

σθ standard deviation of wind angle θ

φ dimensionless parameter

φ′ dispersion parameter depending on microclimatic factors in l−1
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HIGHLIGHTS

• Microclimates dominate near-road black carbon transport from multi-lane 

highways.

• Highest BC, EC and OC occurred during oblique low upwind mostly in early 

morning.

• Other wind conditions permit Gaussian dispersion of different EC and OC 

mobility.

• Wind and temperature dependent σo significantly affects roadside dispersion.

• The microclimate effects in urban settings have implication to black carbon 

assessment.
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Fig. 1. 
a) artisan coordinates of the highway and monitoring stations (in m) showing geometric 

relationships between air plumes (solid and dashed lines), wind, traffic and M1–M5 transect; 

b) black carbon transport in cross-section with major mechanisms marked for a receptor 

p(x,z) in a flat open area.
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Fig. 2. 
Diurnal variations of u, θ, T, ρ, and daily accumulative calm fraction. θ is the angle between 

the road and wind direction in Fig. 1.
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Fig. 3. 

Statistics of u and  at M1 station for the monitoring periods. Numbers of minutely 

measurements are marked. “ + ” and “ − ” indicate wind along and counter traffic in uplane. 

θ is the angle between road and wind direction. θ′ is the conversion of θ to describe the 

traffic wake effect.  is BC concentration normalized to the traffic flow.
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Fig. 4. 
Correlation between CBC and CEC,t at same locations.
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Fig. 5. 
Typical diurnal daily variation of CBC (circle), u × sin θ (line), and its 10-min standard 

variance (STD) (heavy line). The 10-min CBC running average is also shown.
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Fig. 6. 

 and  as a function of u sin θ. Horizontal bar and number indicate  or 

averages of samples at M1 (x = 0) excluding those under oblique low upwinds. Error bar is 

1σ uncertainty  and  and are normalized concentrations to the traffic flow.
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Fig. 7. 

 and  variations with temperature at M1 (solid symbols) and M2–M5 (open). Labels 

in legend: N&A – noon–afternoon; (1) – Gaussian dispersion; (2) – non-Gaussian 

dispersion. Regression slope and R2 are marked.
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Fig. 8. 
C/C0 change in roadside dispersion in downwinds for OC (open) and EC (solid) under ux 

various values. Regression lines are based on Eq. (5).
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Fig. 9. 
C/C0 change in roadside dispersion in A) high upwinds; and B) oblique low winds for OC 

(open) and EC (solid) under various ux values. Solid circle with error bar indicate geomean 

and 1σ. Regression lines are based on Eq. (5).
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Fig. 10. 
R% change of OC and EC in PM2.5 in roadside transport for the two groups: A) Gaussian 

dispersion; b) uniform distribution. 15M and 11M lines are based on Eq. (6).
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Fig. 11. 
Correlations between u and σθ for the morning (filled diamond, open circle) and noon–

afternoon (open square) periods. Two model lines in σθ ~ 1/u (Hanna, 1983) mark the wind 

field envelop of the noon–afternoon variations due to atmospheric turbulence. σθ is the 

standard deviation of wind angle θ.
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Fig. 12. 

Variations with , the overall wind velocity variance, for OC and EC in PM2.5 and 

PM10–2.5. Model lines: A)  of Venkatram et al. (2007); B) C* ~ p(θ) line (m ± 

1σ). Arrows indicate possible meandering effect.
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